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THEORY OF SOLID STATE CYCLOTRON MASER

I. INTRODUCTION

The cyclotron maser radiationl’z

in an electron beam in vacuum originates
from the relativistic variation of electron mass (hence the cyclotron fre-
quency) with velocity. In semiconductors such as InSb, the effective mass
of the electrons depend on velocity due to the nonmparabolic nature of the
energy bands. This property can be utilized to make a solid state cyclotron
maset3(CM) in such semiconductors. The maser will operate in the submillimeter
range and provide a low-power source of radiation in this frequency range.

As shown by Kane,a the energy (wb) of electrons in the conduction band
of InSb is related to momentum (p) by

= 2
s "b'[_{zg +—m§L} -Eg]/z

where m is the effective mass of the electrons at the bottom of the conduction

band and E8 the band gap. From this equation and the relations';'-‘zgwb, it

follows that v -';/m: (1+92/m:2 vgz)l/2 E;/mw, where the parameter m* is
TR L I -1/2
* * * 2, 2
- B = &
m =m [+ X w Ll viiv, ] e
°

1/2

and Ve -I_ES/Z m: ] . In InSb Es = 0.24 ev, Y % 1.30 x 10° m/sec and

m*o = .014 m where m, is the free electron mass. Because of small values of
*
m the solid state cyclotren maser can operate in the submillimeter frequency
range with relatively weak magnetic fields of the order of several kilogauss.
If a thin InSb sample at 77°K is placed in a magnetic field B, and

electrons are injected in the conduction band at an angle to the magnetic

field, the electrons will move in helical trajectories. Initially, the
phases of the electrons in the cyclotron orbits are random and no radiation

is emitted. But phase bunching can occur due to the dependence of cyclotron
Note: Manuscript submitted November 16, 1978.




frequency Q = e Bolm* on the electron energy. The electrons that are
decelerated in the wave electric field rotate faster and accumulate phase lead
while the electrons that are accelerated rotate slower and lag in phase. This
results in phase bunching and the electrons radiate coherently at frequency

o = 8 where s is an integer. This mechanism of maser radiation is different

from the optically pumped 'cyclotron maser" proposed earlier.6'7

Theoretical calculations for cyclotron maser in vacuum have been given
for two different configurations, (1) the waveguide st:rm:l:ure8 and (2) the
cavity structure.9 In the first configuration, the electromagnetic wave grows
as the result of an instability driven by the electron beam. It corresponds to
travelling wave amplification in waveguide structures. In the second model, the
electron beam interacts with the constant amplitude standing wave of a cavity
structure. It corresponds to beam sustained oscillations in a finite Q cavity.
Recently a thecretical treatment of cyclotron maser in solids was given by
Kalmykov et a1.3 for the waveguide structure. In their paper, the dispersion
relation was derived from the Boltzmann's equation in which the collisional.
integral was disregarded. Conditions for maximum wave growth were obtained from
the dispersion relation and the feasibility of a solid state cyclotron maser was
demonstrated.

A major difference between the vacuum cyclotron maser and the solid state
cyclotron maser is the effect of collisions in the latter. Collision in solids
will be a serious obstacle for the phase bunching needed for coherent readiation.
The electrons will remain in orbit for a distance close to the mean free path
length lz. For example, in InSb near 77°l(, kz is of the order of 10 - 100 um.s'w

For electron velocity of the order of 106m/sec, the Larmour radius r. = v,/Q and

L
the pitch of the spiral Xc = 2n vzlﬂ are of the order of .1 um and 1 pm, respective-

ly, for a magnetic field Ho =5 kOe. v | and v. are, respectively, the compomnents

'1
l

|
il
J




of electron velocity perpendicular and parallel to the magnetic field, 2 and
Xc are both much smaller than the mean free path and a large number of turms
(lzllc) of the electron spiral occurs within Xz. Thus, electron cyclotron maser
interaction can take place if the interaction length is of the order of xz, but
the conditions for cyclotron maser interaction rapidly deteriorate when the
interaction length goes much beyond kz. In this regard, a solid state cyclotron
maser in the cavity configuration is expected to offer a very significant ad-
vantage over the waveguide configuration because the cavity configuration requires
a much shorter interaction length. The reason is as follows. In the waveguide
case, the beam interacts with an electromagnetic wave which grows from the
noise or near noise level, while in the cavity case the beam interacts with a
large amplitude standing wave which has been built up and stored in the cavity.
As a result, the interaction is much stronger in the latter case, or in other
words, the required interaction length is much shorter in the cavity than in

the waveguide in order for the beam to lose the same amount of energy. This

is reflected from the fact that in vacuum cyclotron maser experiments, an
oscillator (cavity) is generally shorter than an amplifier (waveguide) by ome
order of magnitude.

Motivated by the above consideration, here we formulate a detailed solid
state cyclotron maser theory in cavity. The formalism and the physical ex-
pressions to be derived are considerably different from those of the waveguide
structure3 although the basic mechanism is similar. The exact spatial field
variation has been incorporated in our calculation and the electron Larmour
radius has been kept arbitrary. This allows us to examine interactions at the

nonfundamental as well as the fundamental cyclotron frequencies. More im-
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portantly, the effect of collisions has also been included in our model. It
will be shown that the collisional effect is such a dominant limiting factor
in the solid state cyclotron maser that the short interaction length afforded

by the cavity structure could be a decisive advantage over the waveguide structure.

In section II we calculate the linear response of an annular electron
beam as it interacts with the cavity modes. The dynamics of the electron
beam is determined from the Vlasov equation while the collisions are treated
with an approximate model. In section III we calculate the electron beam-
cavity mode coupling coefficient, beam energy gain and the threshold beam
power necessary to sustain oscillations on the basis of a cold beam assumptionm.
We also show the dependence of these quantities on the various parameters such
as beam position, beam energy, cavity lemgth and the magnetic field. In

section IV we discuss the results from our theory and suggest some experimental

configurations to observe the oscillations.




I1. MODEL AND FORMULATION

Fig.l shows the configuration of the electron cyclotron maser system
under consideration. An annular beam of electrons is guided by the magnetic
field Bo along helical trajectories inside a circular-crosssection InSb
cavity (radius R and length L < Az). The electrons are injected at an angle’

to the magnetic field such that a major part of their kinetic energy is in

s et

! the form of transverse gyromotion and the rest in the form of axial motiom. 3
The axis of the trajectories is along the cavity (z-axis). The cyclotron 1
orbits may or may not encircle the axis of the cavity, depend;pg on how the
beam is formed. In Fig.l the second type of orbits are shown. We make the
following simplifying assumptions to obtain the linear response of the
electron beam: (i) the beam is sufficiently weak so that its self electro-
static and magnetic fields are small compared with the cavity fiel&s, (ii) the
cavity fields are of first order with respect to the applied magnetic field

Bo and the perturbed electron distribution f(l) caused by these fields is

of first order with regpect to the initial distribution function fo'

(i1i) the distribution function and the cavity fields are independent of the ;
azimuthal angle ©, and (iv) the electron collision frequency is much smaller
than the electron cyclotron frequency.

i The cavity modes may be classified as TE or TM modes. Cyclotron maser
interaction is much stronger for TE modes than the TM modea.l Thus we
consider only TE modes and in accordance with assumptions (i) and (iii)

restrict our attention to TEonm modes given by

zél) = Eec J,(kr) sin k z cos wt , (2a)
31 = (e /) i b S et (2b)
MO -(k /&) E

. n/ ® eo Jo(khr) sin kzz cos wt , (2¢)

b
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where

k

= an/L |, (3a)
kh = xn/R 2 (3b)
x_ being the n-th nonvanishing root of Jl(x) and the wave frequency
w= +k)‘/v—‘ . (3¢)
J_(x) is the Bessel function of order J_.

K and € denote, respectively, the
permeability and the dielectric constant of the medium. c¢ =1 wﬁ;;{:_ﬂ
is the velocity of light in vacuum. We assume that 4 = 4 . The subscript
(1) refers to the first order quantities.
paper.

We use MKS units throughout the

3 PxB
JL 4 PXB
A + m -Vt e:(

. = a—t
JETC I
m coll

where (bflat)L is a collision term whose form will be specified later.
oll

The electron distribution function f is determined by the equation

On the basis of the two different time scales assumed Eassumption (iv)]

we may separate the distribution function f into a slowly varying component f

wave field

representing the collisional relaxation of the zero order distribution function
and a fast varying component (1 representing the perturbation caused by the

A characteristic of the cyclotron maser system is that the cavity

structure, rather than the electron medium, determines the properties of the
wave (spatial profile and dispersion relation, etc.)

Thus, only those
electrons which interact resonantly with the wave are of importance while the
effects of nonresonant electrons can be neglected

As will be demonstrated in




section III, resonant electrons occupy a vary narrow region in the velocity
space. Hence the initial distribution function of interest to the problem
would be one in which all the electrons fall in the resonant region.
Further it is reasonable to assume tha: if an electron suffers a collision
in its path, it will be scattered off the resonant region and consequently
its dynamics will no longer be of interest. Thus we may approximately write

£ as
s

- N - -
£, P ) = £ G, ) exp [-ve-¢)], (5)

where t is the time an electron first enters the cavity, Vv = vz/)‘z the
collision frequency and fo(z-: ;) any function which satisfies the zero
order Vlasov equat:lonu in the absence of collisions. Since the cavity length
L < )‘z’ very few collisions occur and the approximate form for fs in Eq.(5)
should be adequate for our purpose.

On linearizing Eq.(4) according to the ordering scheme in assumption (ii),
e

we obtain the following equation for the perturbed distribution function =

3 "l;. e > 1) = > =
[a+m_* v-;;(pxn)-vi;]f (r, p, t)

Cl : -~ =(1) S =
st T, pethh e AN g0+ SAE ) ] vff,(:,p.t )

(6)

where m* =Y m: with

-1/2
2 2 2
Y-[l- (V.L+v8)/v8] (7)

Note that in Eq.(7), the BGK mode112 of collisions has been assumed. Eq.(6)

may be solved by the method of characteristics, namely, by intergrating it

e e




along unperturbed trajectories of the electrons. Eq.(6) thus reduces to

fu)(r, p, t) =e S de' explVee' -t)] [f(l)(:', ()]

O

(8)

p X B(I)(t' ')]

v*f(ripit),

where the t' integration is along the unperturbed orbits. The primed
quantities -;' and_; ' are treated as functions of t' while : and_; are,
respectively the values of -;' and?;' at t' = t. The lower limit of the
integration t, is given by t, =t -z/vz, i,e. the time an electron at axial
position z and time t first enters the cavity. Substituting Eq.(5) in Eq.(8)

and using the relation t, =t- z/vz, we obtain

t
¢, 3, &) = expl-zn ] - 5 dt' e [’E(l)(;", t")

t:-z/vz

9

- &(1) -
p' XB (x's t') e b T
+ = ] v.l;,fo(r & i S

In the absence of collision f(l) is given by the integral alone on the right-
hand side of Eq.(9). Coliisions reduce f(l) by the factor expf,-z/)\z].
The methods for evaluating the integral in Eq.(9) are standardu and the

result may be written in the form

£ o gDy (D (10)




R 0ot stz i

where

e Eg i(k_z-wt)-z/A k p of k p of
i_,.'(-1)_]..“‘[2‘”0" z z{(»_ z*z).__g__'_ z*.l.._q

m BPJ_ m z
(11)
-18' (9-0)

+z- te o1 Jg (G, (T X e ]
. * i

S=-® §' = .o o = kzpz/m il

with
/m* =q/
Q= eBo m = Qo M e
B

Ty 11 LA Qo s (12)

X =1 - exp [1(w - kzvz - 8Q) l/vz] ’

Gsa'(x) = J‘_H,(x) d Js(x)/dx

In Eq.(11), Im[A] indicates the imaginary part of A. ¢ and 6 are,
respectively, the polar angles of the momentum and position vectors. P.I. and
P, denote the components of momentum, 'i; = m* :, perpendicular and parallel,
respectively to the external magnetic field. f_(l) is given by equation (11)
with w replaced by -w. In obtaining equation (11) we have used the following

relation13

+o
is@ is'6
1 :EE 2

e Jg(xp) = Js+s.(x2) Jgr(x3)e

where X)s Xps Xq, 91 and 02 are related through the triangle shown in Fig.2.

The perturbed azimuthal current ng) is given by

® +o 21

A
ng)- -e 5 f(l)ved3p = -e‘é P dp S.dpz bS ds £ b | sin ¢ (13)




where $ =@ - 0. From Eqs.(10)-(13), we obtain after integration by parts

over PL and p.=

.0 (1)
Jg ‘=g, *+Jg_ > (14)
where
3
0 i(k_z-wt)-z/\
Q) _ o z z
Yo+ o 4mzw : s=ce 3 =-a Jgr(T)
® +e 2m
g S -1(s'+1)0
. \ p dp ltdpz\jdwfoi {e . P ®
PR 2
250 2 2 i
' { Gggr (k¥ )P} (0 - Kk v )X 3 (w - kzvz)x<ZG“.(kan)'l-kanG;B.(kan)}
V3 o2 g2 2 YN
o g
2 2 2 2 2
3 iz(l-x)(w - kz v8 - kz vgw) /vz)j.l_.}
2 * 2 ’ (15)
Y m v8 pz'r]

w:ll:hv] =@ - kzvz - 8Q and G;s.(x) =d G“,(x) ldx . Jg}) is given by Eq.(15)

with w replaced by -w.
Equation (14) gives the perturbed current for a general distribution
function fo. In the following we specialize to a particular distributiom

function which is considered to be the most ideal for cyclotron maser operation.9

It is constructed from the constants of motion of the system (in the absence of

*
collision): p , p_ and Le =Ym v r sin$ - %B r‘z. We assume that
i e o .

Eg ) (
o (o]
; - s =
2 2 PL" B P, P,
£, = kb (:L - 2Lg/eB_ - "o) (16)

2mp,

9




which represents a cold monoenergetic beam moving along helical trajectories
with guiding centers distributed uniformly on a cylinder of radius L The

constant k is determined by the normalization condition
3
£ 2mr dr d°p = N (¢%))

where N is the line density of the electrons (i.e. number of electrons per

unit length). Eq.(16) may be rewritten as

s it b e i

Na(pz'p:) 5(p, - p) A A & A |

” g 2 U ' g k x

- g RN e e lo@ - 0 +8@ - m+3) (06 r)0(xr,0)
"i{r mrp(T, - )

(18)

where

A -1[2 - S
¢, = sin (" +r  -x)/2 rrL] -

’1 for x > 0

o(x) =
10 forx <0 ,

- Iro -rLl and Ty = |r°+ rLI .

The idealized distribution function in Eq.(18) leads to results which can be
physically interpreted and provides valuable information for the operation of

the solid state gyrotron.

III. BEAM POWER GAIN AND THRESHOLD POWER
The time average power gain for all the electrons in the cavity is given

by
2m/w R L
P=uw dtS dtS dg ng) xgl) W (19)
0 0 0

i s i S i D MM i et s




We introduce the following notation:

Bg = vg/c »

= ° * -
ﬁ.LO 11/\'0 m ¢ V.L(’/c 5

o *
BzO P, /Yo P Vzo" *

2 2 2 '1/2
vo-f1-(elo+p‘o)/s‘] .

T = L/vzo

i e e

(20)

)
! T SR SN N S
| 8 u)‘r-kzl.ﬂs/ﬁz ’

A-w'r-kzl.-sno'r/vo s

U = -
A wr + kzL 8 ﬂo‘l'/Yo ;

T is the transit time of the electroms in the cavity and VT = L/Az. From

Eq.(2a), (14), (15), (18), (19) and (20) we have

NLezEg 4o
[
Pa—2 O+, -, -a, \ (21)
* 1 2 3 4 e
i 8m Yq @ s= --( a o % -

where

2 2
H P ) L
a o S(knro an B.LO [A {N(A) + M(4) } 5 kg A ﬂ‘ N(A)]

s1 2 0 ) 2
a8l p2
(22)
Q(kr , kr )
+ B0 BL . (r-kD) M@




2 -
“s(knro k rL)B,LO [AO {N(A') + HQAA'Q i E } k L & Bg N(a') ]

a
.2 A B B‘
(23)
Q(krT , )
-——!—“°A “I‘ * (ut - kL) -{H(A') A },
with
M(x) = [x(l - eV cos x) - vr & x] / (x2 +v2 "'2) : (24)
N(x) = R [1 e e (25)
{ S I e it
| (x + 1vm)? Je Ly ’
|
ro=2cl Q- eV / (41;: 12+ vy (26)

The quantities Q4 amd o, are, respectively, obtained from asl and @, with

the following replacements

i w= -0, A= -A' and A' = -A .

f% The functions Ha(ao, aL) and Qs(ao, aL) are defined by

B = J(a) T (a, ), @n

Qs n 2“s(ao’ 'L) i J's' (aL)Is(‘o’ .I.)

1 i (28)
*rY Js(aL) [Is-l(‘o’ ‘L) h Is+1(‘o’ .'I.):I y
3 where
3 1/2
I(a,a) =~ % S da J,(a) a lin$ [(uz = ni)(ni = .2)]
e |
(29)

Z-.Jlﬂ'(‘l.) Jgi(a) cos c'('-; - Q,) .

13




and

all .o-aL,azﬁlao'l-nLl md$-:1n-1 [(n2+..:-.:)/2..!‘] =

The integral series in Eq.(29) is evaluated in Appendix A and found to

beg

2
I‘(ao. aL) = J.(ao) J;(&L) P (30)
Eq.(21) contains a summation over all harmonics of the cyclotron frequency.

As we shall see later, radiation is favored at a particular cyclotron fre-

quency near the synchronous condition
w-k v -8 0°/Y° = 0.

Hence in Eq.(21) we keep only one term. We are mostly interested in the
fundamental cyclotron frequency. In later calculations parameters are chosen
such that s = 1 term dominates. In the case V = 0, the quantities O assume

the form
Eas 9nd 3 2
o = -us.(elo/ag) E,. T’y /80 ) {4 sin®(a/2) - A sinA}
2t ) 2 ] A
+ kLB /B)A{ A sina - 2 sin’(A/2) A (31)

+2Q . (ur -k Lysin®(a/2) /a :

o, =H,. <BLO/Bg)2 [ (? 2 K2 a:/a:) fza + a/a'ysin®(a'/2)-a -m'}

+ kzL(B:/B:)A {A sinA' - 2(A/A')sin2(A'/2) } ] / (AzA') (32)

- 2 « (uf - k Lsin’@a'/2) / @a') .

14




e

The other two quantities Qq and Q, are obtained by the replacements

W= -w, A= =-A' and A' = -A
in the expressions for o and “2’ respectiﬁely.

In Eq.(10) fil) and ffl) may be regarded as perturbations in the
electron distribution function due to the forward and backward travelling
waves which make up the standing cavity modes. In eq.(2l), the terms
Qg and Qgo arise from interaction of fil) with the forward and the backward
travelling waves. Similarly, as3 and a84 terms are due to the interaction
of ffl)with the two waves.

In the expression for a's, the first term (proportional to H8 gfo )
arise from the transverse motion of the electrons and the second term
(proportional to (wT - kzL)Qs) is due to wave induced oscillations. The
first term is much larger than the second term unless BlO is too low. Hence
the coupling between the electron beam and the cavity modes is essentially
proportional to H‘(knto,kan). The first term may be positive (beam power
gain) or negative (beam power loss) depending on the phase factor A.

It is shown in Appendix B that E., the amplitude of the component of the
cavity electric field tangential to the electron cyclotron orbit (see Fig.l)

may be written as

4o
1/2
E¢ A EO z H‘ (knro, kan) cos s ,
o 8=0
where A = 1 for s = 0 and A = 2 for 8 # 0. Thus EO Rxs may be interpreted

o
as the s-th harmonic component of the effective electric field {n the di-

rection of the electron velocity and the beam power gain is proportional to

H.'i

16




In the expression for P, the guiding center position r , enters through

H(kr, k rL). Hence P can be maximized by maximizing H. with respect to r

TRNGT TR >

for each combination of n and s. Numerical computation shows that the
optimum value of r_ois *48R for n = 8 = 1, This value of T, will be used in
later calculations.

The total stored energy (W) in the cavity is given by

2 2 2
W= L e (knn)zoo e . (33)
Let us define a dimensionless quantity F
F=PT/W . (34)

as the ratio of the total beam energy gain during one transit time to the

total stored field emergy. From Eq (21), (33) and (34), we get

F= m: Ta/2 Y, J: ), @35)

2. 8 o #1173 3 Aricsiw
wherewp (N e“/mR fno) and O ((114-(:12 (0 Q

3 = o).
The quantity F may be positive or negative depending on the value of the
phase factor A. The beam generates electromagnetic radiation in the range of

A for which F is negative.

An actual cavity has a finite Q due to dielectric losses or loading or

wall resistivity or end-faces not being perfectly reflecting and energy is

lost from the cavity at the rate

Pout = WqQ . (36)

The electron beam generates emergy at the rate

P=-FW T (37)

16




Thus the threshold condition for cavity oscillations is given by

“FQ=2wr . (38)

The energy of the electrons in the conduction band of the crystal may be

written as

Wy = (Y, - Dug g2 e? 39
and the electron beam power inside the crystal is

B, = N(Y_ - Dm s: g T (40)
From Eqs. (35), (38) and (40), we find that

B, 2 p;" ’ (41)

where the threshold beam power P;h is given by

B = -@r/e)® « {y (v 18] B, Dk e} - Jaes m,’f2ety . G

g 20 o' n

The result for cyclotron maser in vacuum is recovered by setting € = co,

3 *
and m 0.014 m, in InSb

* &
Bg =1 and m =m in Eq.(42). Since Bs = 4,3X10
at 77°K, the threshold beam power for the solid state cyclotron maser is many

orders of magnitude lower than that of the vacuum case. Numerical examples for

F and P;h are given in the next section.

IV. NUMERICAL RESULTS AND DISCUSSION
The quantity F (eq.35) and the product Q Pfh (eq.42) depend on the

parameters s, n, m, R, LA A, Yo’ v.m/vz and (. For numerical examples we

z o]
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consider only the fundamental mode numbers, i.e., s = m = n < 1, In this
case x = kn R = 3.832, kzL =mand A' = A+ 2w, As shown earlier LR should
be 48R to maximize Hs(xnrO/R, X, tL/R). From equations (35) and (42) it
can be seen that the radius of the cavity, R, may be scaled out by nor-
malizing length to R and frequency to c/R. Wave vector, time and velocity.
are correspondingly normalized. The natural dimensionless quantities

Yo B, A, wr, kzL, Hs and Q, remain unchanged. For a given L = L/R, o =
cw/R is fixed by Eq.(3c). F and Q P:h are obtained numerically for various

values of the parameters L, Y _, /8 and Q = cQ/R (i.e. A).
o o' "zo

BJ.
Figs. 3a and 3b show typical plot of F as a function of A,

F becomes negative for A in the range - .9m < A < 2m ., The lower limit

does not change with L and shows slight changes only with Yo , and B.L o/on'

The maximum negative gain, -Fm , increases with increase in Yo, B_[O/Bzo

and L . The magnitude of F decreases with VT as expected. o az, a3

and o, are also plotted as function of A in fig. 3. Q, differs only slightly

from Qy. In the travelling wave structure, the gain 15 determined by the

term Q. In this case gain is negative only:,'8 for A > 0. The phase

factor Am corresponding to -l'-‘lll lies near + .1 m ., Am shifts slightly towards

lower values with increase in L , Y, and B,Lolbzo .
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In Fig.4, Q P;h is plotted as a function of the electron energy in the crystal
Wp = (Yo - l)m: cz ﬁ: for cyclotron frequency 9] corresponding to Ah' Data
are shown for QLO/Bzo = 1.5 and different values of L and VT = L/Xz. The
threshold power increases with decrease in L and increase in VT. Q P:h is
of the order of 10-3 watts for electron energies ~ 10-3ev. For L = .05 and
vT = .5, Q P:h- 1.8 mW at W = 13.2 m ev. Assumming Q = 10C, P:h e
18 pW. As the- length of the cavity is decreased to reduce the effect
of collisions, the lowest eigenfrequency increases. For mean free path
Az = 100 ym and T = .05, the operating frequencies at vr = 1.0 and 0.5 are,
respectively, 367 GHz and 734 GHz. The corresponding cyclotron frequencies
Q for maximum beam energy loss are 357.4 GHz (Ho = 1787 Oe) and 715 GHz (H° =
3575 Oe).

We make some suggestions for possible experiments to observe solid-state
cyclotron maser radiation. The cavity might be in the form of a disc with
polished ends and metallized edges. The thickness of the disc should be
less than a mean free path of the electrons. The cavity is placed in a
uniform magnetic field. One end-face of the disc is bombarded by an electron
beam at an angle to the field such that the electronsget into the conduction
band with appropriate transverse and axial velocities. Another possibility
is to use the structure under forward bias condition with a doping profile
similar to that of a Read diodelu (n+p1 p+) such that there is a very
narrow accelerating region of high d.c. electric field and a longer intrinsic

region where the d.c. electric field is negligible. Cyclotron maser radiation

takes place in this region.
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V. CONCLUSION

In this paper we propose the oparation of a solid-state cyclotron
maser in the cavity configuration and demonstrate its feasibility with a theo-
retical analysis. We have derived analytical expressions for both the
electromagnetic power gain and the threshold beam power. The dependence of
these two quantities on the various parameters such as the length and
radius of the cavity, electron mean face path, the magnetic field, initial
electron beam energy, radial and axial eigenmode number, cyclotron mode, etc.
has been shown. In order to minimize the effects of collision, the cavity
length should be less than a mean free path of electrons. This sets a
lower limit to the frequency that can be used. It is seen from Eqs. (35) and
(40) that a better performance is obtained with a material having large mean
free path kz’ small band gap i.e. v8 and small effective mass m: . The
cavity length can be increased and the frequency of operation lowered if Az
is larger. Since the cyclotron frequency is preportional to Bo/m: , Smaller
magnetic fields are required for materials with smaller m: . Furthermore,
P;h decreases as m:Z . A smaller value of v8 is also desirable because P:h
is lowered and electron velocity needed to obtain a given value of A is
also reduced. Our results are based on a linear theory. A nonlinear theory
is necessary to calculate the efficiency and the saturation power level of

the system. This will be the subject of a future investigation.

The authors are indebted to Dr.K.L.Davis for many helpful discussionms.
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Appendix A

EVALUATING THE INTEGRAL SERIES /, (a0, a,)

The integral series I, (ag, a; ) appearing in Eqgs. (27) and (28) is defined as

L] u
I(ay.a;) = %2 J dasin ¢94, (a)al(@? —a?) (@} — a?)) 12
. o

. .-2 J‘+"(GL)J'i(d) cos Slllzr- = ¢o]' :

(A1)

where

ay =|lay —al,

| a =g +a, §5 - |
: . and : 3 ;
H ' - ¢ =sin V[(a? + a} —-hg)lzaa,,i

| ' ] e 4 (A-z)
Inserting Eq. (A.2) into Eq. (A.1) and using the Bessel function identity

J; (w) cos sV = i“ Iy 45 (). (v) cos s'a,

: _ e %)
E ~ where w = (w? +v2 —2uvcosa)? and ¥ '=.cos ;'[(u —vcos a)/w] , we reduce Eq.
| (A.1) to (after some algebra)
| 1 ) Jy(ag) 4 . J(a)(@? +a} —ad)? - - a} +a} —a?
\ dg,a e . cos|scos
; : AT " % alle? —af)(a} —a)] 2aga,
(A9) -

To carry out the integration in Eq. (A.4), we replace the variable of integration a with x, where

X is defined through the equation

a = (a§ +a}] —2aya, cos x) ',

Again after some algebra, we obtain

‘21
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APPENDIX A

J(a) + 512 +a} —2aya cos:; 2
l,(ao.a,_)-—'—’L_[dx' 20 21. 09, e
- (a5 + af —2aya; cos x) 12

- (a; — gy cos x)cos sx

y d_T
i (GO)E[‘IXJOI(‘I& +a} —2aya; cos x) /2] cos xx, .

Using tabulated integral formula.B' we obtain

L (ag.a) =J2(ag)J;(ay).
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APPENDIX B

The component of the cavity electric field tangential to the electron

cyclotron orbit is

TITSS E‘ -“. COS a
- EnJl (k.’) Cos a,

(B1).
where the z-dependence of E‘ has been neglected. We may express E,4 in terms of ry, r;,and

6 through the following geometrical relations (see Fig.1):
r=(3 +1 —2pr cos $)2
cosa = lry +rgcos (w —@)V/r

= (rp —rycos )/ (i + 1} —2ryr, cos $)12

Thus.

Ey = Egdy Ik, (id + r} —2ryry cos ¢) l”_] (r, — 1y cos @)
g+ —2r°r,; cos ¢] ~12

= — Egky, ‘.W Jolk, 0 + 1} —2rr, co§ #) 1), Y

- Expanding Ej in terms of the sinusoidal harmonics of ¢ and noting that E, is an even func-

tion of ¢, we obtain

E, =% ES cos sp :
‘A o 83)
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where
& e -
Ely =5 [ doE, cos s
= —QEy k) -a%— _[ dpJo Ik, (R + 1} —2rgry cos @) ),
: L o
1, s=0
© =12 s=o.
Using tabulated integral formulme}3 we obtain from Eq. (4),

Elfy = — OEgJ, (ko) (kyry).

= — OEgH} (kyro kpry)

~

(B4)

(B8
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Fig. 1 — End view of the electron cyclotron maser. Guiding centers are uni-
formly distributed on a circle of radius ro. The point 0 is the axis of sym-
metry. The circle of radius ry, is an arbitrarily chosen electron orbit and ¢
is the guiding center of this electron. Eg the electric field of the cavity and
E, the component of Eg tangential to the electron orbit.
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| X

L Fig. 2 — Geometrical relations of the variables used in the
| Bessel function identity
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Fig. 3 (a) — F (solid curve) vs. A for n = s = m = 1, T,= 0.48,
L=01,7, = 1.1, B16/Bz0 = 1.5 and v7 = 0. The dashed curves

marked a;, ag, a3 and a4 are plots of the four components of
F as function of A. Dielectric constant € = 17.7 ¢,.
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Fig. 3(b) — F as a function of A for four different values of »r with
other parameters the same as in Fig. 3(a)
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| Fig. 4 — PP the threshold beam power, as a function of the beam kinetic !
energy, Wy, forn =s =m = 1,7, = 0.48, 8, ,/8,, = 1.5 and (a) T = 0.1,
(b) T = 0.05. The magnetic field is chosen so as to maximize the beam
energy loss. Curves are shown for three different values of vr.







